Законы сохранения в механике

Задача 1

На прямолинейном горизонтальном участке пути стоят N=5 одинаковых вагонов. Промежутки между соседними вагонами одинаковы и равны L=30 м. К крайнему вагону подкатывается еще один такой же вагон, имеющий скорость $v_0=2$ м/с. В результате N последовательных столкновений, в каждом из которых сталкивающиеся вагоны сцепляются вместе, все N+1 вагонов соединяются в один состав. Найти время τ между первым и последним столкновениями. Силами сопротивления движению вагонов пренебречь.

Идея. Воспользуйтесь законом сохранения импульса.

Указание 1. Примените закон сохранения импульса для каждого столкновения.

У казание 2. Найдите скорость состава после n-го столкновения и время между n-м и (n+1)-м столкновениями.

Решение. Движущийся и покоящиеся вагоны представляют собой замкнутую механическую систему. Пусть m — масса одного вагона. По закону сохранения импульса для последовательных столкновений вагонов имеем $mv_0=2mv_1$, $2mv_1=3mv_2$, $3mv_2=4mv_3,\ldots$, где v_n — скорость состава после n-го столкновения. Отсюда следует, что $v_n=v_0/(n+1)$. Время, прошедшее между n-м и (n+1)-м столкновениями, равно $t_n=\frac{L}{v_n}=\frac{L(n+1)}{v_0}$. Время, прошедшее между первым и последним (т.е. (N-1)-м)

столкновениями, $\tau = t_1 + t_2 + \ldots + t_{N-1} = \frac{L}{v_0}(2 + 3 + \ldots + N)$. По формуле для суммы

арифметической прогрессии находим $\tau = \frac{L(N^2 + N - 2)}{2v_0} = 210$ с.

Otbet.
$$\tau = \frac{L(N^2 + N - 2)}{2v_0} = 210$$
 c.

Задача 2

Граната массой m=1 кг разорвалась на высоте h=6 м над землей на два осколка. Непосредственно перед разрывом скорость гранаты была направлена горизонтально и по модулю равна $v=10\,$ м/с. Один из осколков массой $m_1=0,4\,$ кг полетел вертикально вниз и упал на Землю под местом разрыва со скоростью $v_1=40\,$ м/с. Чему равен модуль скорости $v_2\,$ второго осколка сразу после разрыва? Ускорение свободного падения $g=9,8\,$ м/с 2 .

Идея. Воспользуйтесь законом сохранения импульса и кинематическим законом равноускоренного движения.

Указание 1. Используя закон сохранения импульса в проекциях на горизонтальное и вертикальное направления, найдите скорости осколков сразу после разрыва гранаты.

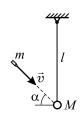
Указание 2. Запишите кинематическую связь между вертикальной проекцией скорости первого осколка сразу после разрыва и у поверхности Земли.

Решение. Обозначим через $v_{\rm lh}$ модуль скорости первого осколка сразу после разрыва гранаты. Пренебрегая импульсом силы тяжести за время разрыва, по закону сохранения импульса имеем $mv=(m-m_1)v_{2x}$ (в проекции на горизонтальное направление), $m_1v_{\rm lh}=(m-m_1)v_{2y}$ (в проекции на вертикальное направление). Отсюда $v_{2x}=\frac{mv}{m-m_1}$, $v_{2y}=\frac{m_1v_{\rm lh}}{m-m_1}$. Скорость падения первого осколка на Землю и его скорость сразу после разрыва гранаты связаны кинематическим соотношением $v_1^2=v_{\rm lh}^2+2gh$. Следовательно, $v_{\rm lh}^2=v_1^2-2gh$. Учитывая, что $v_2=\sqrt{v_{2x}^2+v_{2y}^2}$, находим $v_2=\frac{1}{m-m_1}\sqrt{m^2v^2+m_1^2\left(v_1^2-2gh\right)}\approx 30,6$ м/с.

Otb et.
$$v_2 = \frac{1}{m - m_1} \sqrt{m^2 v^2 + m_1^2 (v_1^2 - 2gh)} \approx 30,6$$
 m/c.

Задача З

Шар массой M=1 кг подвешен на невесомом жестком стержне длиной l=1,25 м, шарнирно закрепленном за верхний конец. В шар попадает пуля массой m=10 г, летящая со скоростью v=500 м/с под углом $\alpha=45^\circ$ к горизонту, и застревает в нем. Определить максимальный угол β отклонения стержня от вертикали. Ускорение свободного падения g=9,8 м/с 2 .



Идея. Воспользуйтесь законом сохранения импульса и законом сохранения механической энергии.

У казание 1. Используйте закон сохранения импульса в проекции на горизонтальное направление.

У казание 2. Запишите закон сохранения механической энергии при движении шара с пулей.

Решение. Пусть u – модуль скорости шара с застрявшей в нем пулей непосредственно после соударения. По закону сохранения импульса в проекции на горизонтальное направление имеем $mv\cos\alpha = (m+M)u$. При движении шара с пулей после соударения сохраняется механическая энергия, откуда следует, что высота подъема шара

над нижней точкой $h=\frac{u^2}{2g}$. С другой стороны, $h=l(1-\cos\beta)$. Отсюда находим

$$\beta = \arccos \left[1 - \frac{m^2 v^2 \cos^2 \alpha}{2(m+M)^2 gl} \right] \approx 60^\circ.$$

Otbet.
$$\beta = \arccos \left[1 - \frac{m^2 v^2 \cos^2 \alpha}{2(m+M)^2 gl} \right] \approx 60^\circ.$$

Задача 4

С горки высотой h=2 м с углом наклона $\alpha=45^\circ$ начинают скатываться санки с нулевой начальной скоростью. Найти скорость v санок у основания горки, если на верхней половине горки коэффициент трения пренебрежимо мал, а на нижней половине коэффициент трения $\mu=0,1$.

Идея. Примените закон изменения механической энергии санок.

Указание. Найдите работу силы трения.

Решение. Длина участка горки, на котором коэффициент трения отличен от нуля, $S = \frac{h}{2\sin\alpha}$. Модуль силы трения, действующей на санки на этом участке,

 $F_{
m Tp}=\mu mg\cos lpha$. Работа силы трения $A_{
m Tp}=-F_{
m Tp}S=-rac{1}{2}\mu mgh\cot lpha$. По закону изменения механической энергии $rac{mv^2}{2}-mgh=A_{
m Tp}$. Отсюда $v=\sqrt{gh(2-\mu\cot lpha)}pprox 6,1$ м/с.

OTBET. $v = \sqrt{gh(2 - \mu \operatorname{ctg} \alpha)} \approx 6.1 \text{ m/c}.$

Задача 5

С наклонной плоскости, составляющей угол $\alpha = 45^{\circ}$ с горизонтом, соскальзывает без

начальной скорости небольшое тело и ударяется о выступ, перпендикулярный наклонной плоскости. Считая удар о выступ абсолютно упругим, найти, на какую высоту h поднимется тело после удара. Начальная высота тела H=1 м, коэффициент трения $\mu=0,5$.

Идея. Примените закон изменения механической энергии тела.

Указание 1. Найдите работу силы трения.

У казание 2. Воспользуйтесь законом изменения механической энергии.

Решение. Пусть m – масса тела. Модуль силы трения, действующей на тело, $F_{\rm TD} = \mu mg \cos \alpha$. Путь, пройденный телом по наклонной плоскости от начального до

конечного положения, $S=\frac{H+h}{\sin\alpha}$. Следовательно, работа силы трения $A_{\rm rp}=-F_{\rm Tp}S=$ $=-\mu mg(H+h)$ ctg α . Поскольку в начальном и конечном положениях скорость тела равна нулю, по закону изменения механической энергии $mgh-mgH=A_{\rm Tp}$. Отсюда

находим
$$h = H \cdot \frac{1 - \mu \operatorname{ctg} \alpha}{1 + \mu \operatorname{ctg} \alpha} \approx 0.33$$
 м.

Otbet.
$$h = H \cdot \frac{1 - \mu \operatorname{ctg} \alpha}{1 + \mu \operatorname{ctg} \alpha} \approx 0.33 \text{ M.}$$

Задача 6

На горизонтальной плоскости лежит деревянный брусок массой $M=100\,$ г. В брусок попадает пуля массой $m=10\,$ г, летящая горизонтально со скоростью $v_1=800\,$ м/с, и пробивает его насквозь. Скорость пули после вылета из бруска $v_2=200\,$ м/с. Какое количество энергии Q перешло во внутреннюю энергию тел в процессе удара? Трением бруска о плоскость пренебречь.

- Идея. Примените закон сохранения импульса и закон изменения механической энергии.
- У казание 1. Используйте закон сохранения импульса и определите скорость бруска после вылета пули.
- Указание 2. Воспользуйтесь законом изменения механической энергии.

Решение. По закону сохранения импульса $mv_1 = mv_2 + Mu$, откуда скорость бруска после вылета из него пули $u = \frac{m}{M}(v_1 - v_2)$. По закону изменения механической энергии $\frac{mv_1^2}{2} = \frac{mv_2^2}{2} + \frac{Mu^2}{2} + Q$. Отсюда $Q = \frac{m}{2}(v_1 - v_2) \cdot \left[v_1 + v_2 - \frac{m}{M}(v_1 - v_2)\right] =$

Ответ.
$$Q = \frac{m}{2}(v_1 - v_2) \cdot \left[v_1 + v_2 - \frac{m}{M}(v_1 - v_2)\right] = 2820$$
 Дж.

Задача 7

= 2820 Дж.

На гладком горизонтальном столе покоятся два одинаковых кубика массой M каждый. В центр левого кубика попадает пуля массой m, летящая горизонтально со скоростью v_0 , направленной вдоль линии, соединяющей центры кубиков. Пробив насквозь левый кубик, пуля летит дальше со скоростью $v_0/2$, попадает в правый кубик и застревает в нем. Через какое время τ после попадания пули в левый кубик кубики столкнутся, если начальное расстояние между ними равно L? Размерами кубиков пренебречь.

- Идея. Примените закон сохранения импульса и закон изменения механической энергии.
- У казание 1. Воспользуйтесь законом сохранения импульса при взаимодействии пули с кубиками.
- Указание 2. Найдите относительную скорость кубиков после взаимодействия с пулей.
- У казание 3. Используйте кинематические уравнения для движения кубиков.

Решение. Пусть u_1 и u_2 — скорости брусков после соударения с пулей. Из закона сохранения импульса при взаимодействии пули с кубиками следуют равенства $mv_0=Mu_1+\frac{mv_0}{2}, \quad \frac{mv_0}{2}=(m+M)u_2, \;\;$ Отсюда $u_1=\frac{m}{M}\cdot\frac{v_0}{2}, \;\; u_2=\frac{m}{m+M}\cdot\frac{v_0}{2}$. Время полета пули с момента столкновения с левым кубиком до момента столкновения с правым кубиком равно $t_1=\frac{2L}{v_0}$. За это время левый кубик сместился на расстояние

$$x_1 = u_1 t_1 = \frac{m}{M} L$$
. Относительная скорость кубиков $u_{\text{отн}} = u_1 - u_2 = \frac{m^2 v_0}{2M (m+M)}$. Время,

которое прошло с момента, когда пуля попала в правый кубик, до столкновения куби-

ков,
$$t_2 = \frac{L - x_1}{u_{\text{отн}}} = \frac{2L(M^2 - m^2)}{m^2 v_0}$$
 . Искомое время $\tau = t_1 + t_2$. Объединяя записанные вы-

ражения, получаем $\tau = \frac{2L}{v_0} \cdot \frac{M^2}{m^2}$.

OTBET.
$$\tau = \frac{2L}{v_0} \cdot \frac{M^2}{m^2}$$
.

Задача 8

На горизонтальной плоскости лежит деревянный брусок массой M=4 кг, прикрепленный к вертикальной стенке пружиной жесткостью k=100 Н/м. В центр бруска попадает пуля массой m=10 г, летящая горизонтально и параллельно пружине, и застревает в нем. Определить скорость пули v, если максимальное сжатие пружины после удара составило $\Delta l=30$ см. Трением бруска о плоскость пренебречь.

Идея. Примените закон сохранения импульса и закон сохранения механической энергии.

- У казание 1. Воспользуйтесь законом сохранения импульса при взаимодействии пули и бруска.
- У казание 2. Воспользуйтесь законом сохранения механической энергии для системы тел «брусок пуля пружина».

Решение. Поскольку соударение пули с бруском является кратковременным, смещение бруска за время соударения пренебрежимо мало и сила упругости в момент соударения не возникает. Следовательно, суммарный импульс пули и бруска во время соударения сохраняется: mv = (m+M)u, где u — скорость бруска с застрявшей в нем пулей сразу после соударения. При последующем движении бруска и пули сохраняется механическая энергия, причем при достижении максимального сжатия пружины бру-

сок с пулей останавливается. Следовательно, $\frac{(m+M)u^2}{2} = \frac{k\Delta l^2}{2}$. Объединяя записан-

ные выражения, получаем $v = \frac{\Delta l}{m} \sqrt{(M+m)k} = 600$ м/с.

Otbet.
$$v = \frac{\Delta l}{m} \sqrt{(M+m)k} = 600$$
 M/c.

Два одинаковых маленьких шарика соединены невесомым жестким стержнем длиной $l=60\,$ см. Стержень стоит вертикально вплотную к вертикальной плоскости. При смещении нижнего шарика вправо на малое расстояние система из шариков приходит в движение в плоскости рисунка. Найти модуль скорости нижнего шарика v в момент времени, когда верхний шарик находится на высоте $h=40\,$ см над горизонтальной плоскостью.

костей, трением пренебречь. Ускорение свободного падения принять $g = 10 \text{ м/c}^2$.

Идея. Примените закон сохранения механической энергии.

Считать, что при движении шарики не отрываются от плос-

Указание 1. Определите связь между модулями скоростей концов стержня и углом, который составляет стержень с вертикальной стенкой.

У казание 2. Используйте закон сохранения механической энергии.

Решение. Поскольку длина стержня постоянна, проекции скоростей шариков на направление стержня в каждый момент времени совпадают. Обозначив через \vec{u} скорость верхнего шарика, имеем (см. рисунок) $u\cos\alpha =$

 $=v\cos\beta=v\sin\alpha$, откуда $u=v\tan\alpha$, где $\tan\alpha=\frac{\sqrt{l^2-h^2}}{h}$. Из закона сохранения механической энергии шариков следует равенство $mgl=mgh+\frac{m(u^2+v^2)}{2}$. Объединяя записанные выражения, получаем $v=\frac{h}{l}\sqrt{2g(l-h)}\approx 1{,}33\,$ м/с.

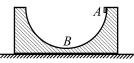
$$\vec{u}$$
 \vec{v}

Otbet.
$$v = \frac{h}{l} \sqrt{2g(l-h)} \approx 1.33 \text{ m/c.}$$

Задача 10

Сферическая чашка массой M = 200 г покоится на гладкой горизонтальной поверхно-

сти. По внутренней поверхности чашки из положения A начинает скользить без начальной скорости маленький брусок массой $m=20\,$ г. Какую скорость v будет иметь чашка в тот момент, когда брусок достигнет наинизшей точки (положе-

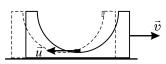


ние B), если радиус чашки R=8 см. Трением между всеми поверхностями пренебречь.

Идея. Примените законы сохранения импульса и механической энергии.

- Указание 1. Изобразите положение тел в тот момент, когда брусок достигает низшей точки.
- Указание 2. Запишите законы сохранения импульса и энергии.

Решение. Положение тел в момент, когда брусок достигает низшей точки, изобра-



жено на рисунке сплошными линиями. Скорость бруска \vec{u} направлена в этот момент горизонтально. Из законов сохранения импульса и механической энергии имеем

$$mu=Mv$$
, $mgR=\frac{mu^2}{2}+\frac{Mv^2}{2}$. Исключая u , получаем

$$v = m\sqrt{\frac{2gR}{M(m+M)}} \approx 11.9 \text{ cm/c}.$$

OTBET.
$$v = m\sqrt{\frac{2gR}{M(m+M)}} \approx 11.9$$
 cm/c.

Задача 11

Человек массой $M=70\,$ кг, неподвижно стоявший на коньках, бросил вперед в горизонтальном направлении снежный ком массой $m=3,5\,$ кг. Какую работу A совершил человек при броске, если после броска он откатился назад на расстояние $S=0,2\,$ м? Коэффициент трения коньков о лед $\mu=0,01$. Ускорение свободного падения $g=10\,$ м/с 2 .

- Идея. Примените закон сохранения импульса и закон изменения механической энергии.
- У казание 1. Используйте закон сохранения импульса в системе «человек снежный ком» при броске.
- У казание 2. Запишите закон изменения механической энергии системы при броске снежного кома.

Решение. Пусть v и u – скорости снежного кома и человека сразу после броска. Совершенная при броске работа потрачена на сообщение кинетической энергии как

снежному кому, так и самому человеку: $A = \frac{mv^2}{2} + \frac{Mu^2}{2}$. Считая бросок кратковре-

менным, можно пренебречь импульсом силы трения за время броска. Поэтому в момент броска сохраняется суммарный импульс снежного кома и человека, откуда следует, что mv = Mu. Закон изменения механической энергии при движении человека по-

сле броска дает соотношение $\frac{Mu^2}{2} = \mu MgS$. Объединяя записанные равенства, получа-

ем
$$A = M \left(1 + \frac{M}{m} \right) \cdot \mu g S = 29,4 \text{ Дж.}$$

Ответ.
$$A = M\left(1 + \frac{M}{m}\right) \cdot \mu gS = 29,4 \text{ Дж.}$$

При броске тела от поверхности Земли под некоторым углом к горизонту была совершена работа A = 58.8 Дж. На каком расстоянии S от места бросания тело упало на Землю, если его масса m = 1 кг, а максимальная высота подъема в полете H = 3 м? Ускорение свободного падения g = 9.8 м/с².

- Идея. Используйте закон изменения механической энергии и кинематические соотношения для движения тела, брошенного под углом к горизонту.
- У казание 1. Примените закон изменения механической энергии и определите модуль начальной скорости тела.
- У казание 2. Воспользуйтесь кинематическими соотношениями для движения тела, брошенного под углом к горизонту.

Решение. Обозначим через v_0 модуль скорости тела после броска. По условию $\frac{mv_0^2}{2}=A$, откуда $v_0=\sqrt{\frac{2A}{m}}$. Максимальная высота подъема тела, брошенного под углом α к горизонту, $H=\frac{v_0^2\sin^2\alpha}{2g}$. Отсюда $\sin\alpha=\sqrt{\frac{2gH}{v_0^2}}=\sqrt{\frac{mgH}{A}}$, $\cos\alpha=\sqrt{1-\frac{mgH}{A}}$. Учитывая, что дальность полета тела $L=\frac{2v_0^2\sin\alpha\cos\alpha}{g}$, находим $S=4H\sqrt{\frac{A}{mgH}}-1=12$ м.

Otbet.
$$S = 4H\sqrt{\frac{A}{mgH}-1} = 12 \text{ m.}$$

Задача 13

Спутник запущен на круговую орбиту, проходящую на высоте $h=350\,$ км над поверхностью Земли. Через некоторое время спутник перевели на другую круговую орбиту, радиус которой меньше на $\Delta h=25\,$ км. На какую величину η изменилась при этом кинетическая энергия спутника по отношению к ее первоначальному значению? Радиус Земли $R=6400\,$ км.

Идея. Используйте определение кинетической энергии тела.

Указание. Для определения скорости движения спутника воспользуйтесь уравнением, описывающим движение тела по окружности, и законом всемирного тяготения.

Решение. Уравнение движения спутника по круговой орбите под действием силы притяжения Земли имеет вид $\frac{mv_1^2}{R+h}=G\frac{mM}{(R+h)^2}$, где m — масса спутника, v_1 — его скорость на первоначальной орбите, M — масса Земли, R — ее радиус, G — гравитационная постоянная. Отсюда $v_1^2=\frac{GM}{R+h}$. Аналогично $v_2^2=\frac{GM}{R+h-\Delta h}$, где v_2 — скорость спутника на новой орбите. Учитывая, что искомая величина $\eta=\frac{E_2-E_1}{E_1}=\frac{v_2^2-v_1^2}{v_1^2}$, получаем ответ: $\eta=\frac{\Delta h}{R+h-\Delta h}=3,7\cdot 10^{-3}$. В результате этого маневра кинетическая энергия спутника увеличилась.

Otbet.
$$\eta = \frac{\Delta h}{R + h - \Delta h} = 3.7 \cdot 10^{-3}$$
.

Задача 14

Между двумя кубиками массами m и M находится сжатая пружина. Если кубик массой M удерживать на месте, а другой освободить, то он отлетает со скоростью v. С какой скоростью v_1 будет двигаться кубик массой m, если оба кубика освободить одновременно? Деформация пружины одинакова в обоих случаях. Трением и массой пружины пренебречь.

Идея. Воспользуйтесь законами сохранения импульса и механической энергии.

У казание 1. Запишите закон сохранения механической энергии для обоих случаев, рассматриваемых в условии задачи.

Указание 2. Примените закон сохранения импульса.

Решение. Обозначим через $E_{\rm n}$ энергию сжатой пружины. Имеем $E_{\rm n}=\frac{mv^2}{2}$, $E_{\rm n}=\frac{mv_1^2}{2}+\frac{Mv_2^2}{2}$, где v_1 и v_2 – скорости кубиков, которые они приобретают, когда их отпускают одновременно. По закону сохранения импульса $mv_1=Mv_2$. Объединяя записанные выражения, получаем $v_1=v\sqrt{\frac{M}{m+M}}$.

Otbet.
$$v_1 = v \sqrt{\frac{M}{m+M}}$$
.

Шарик массой m = 100 г подвешен на нити длиной l = 1 м. Его приводят в движение так, что он обращается по окружности, лежащей в горизонтальной плоскости, которая находится на расстоянии l/2 от точки подвеса. Какую работу A нужно совершить для сообщения шарику такого движения?

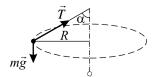
Примените закон изменения механической энергии.

У казание 1. Запишите уравнения движения шарика по окружности.

У казание 2. Найдите кинетическую и потенциальную энергии шарика.

Решение. Шарик движется по горизонтальной окружности под действием сил, изо-

браженных на рисунке, где \vec{mg} – сила тяжести, \vec{T} – сила натяжения нити. В проекциях на горизонтальную и вертикальную оси неподвижной системы координат уравнения



движения шарика имеют вид: $\frac{mv^2}{R} = T \sin \alpha$, $mg = T \cos \alpha$. $R = l \sin \alpha$, находим кинетическую

энергию шарика

 $E_{\rm k} = \frac{mv^2}{2} = \frac{mgl}{2} \operatorname{tg} \alpha \sin \alpha$, Потенциальная энергия шарика относительно положения, занимаемого им в неподвижном состоянии, $E_{\pi} = mgl\cos\alpha$. По закону изменения механической энергии искомая работа $A=E_{\rm K}+E_{\rm II}=mgl\cos\alpha\left(\frac{1}{2}{\rm tg}^2\,\alpha+1\right)$. Поскольку по

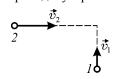
условию $\alpha = 60^{\circ}$, ответ имеет вид $A = \frac{5}{4} mgl \approx 1.2$ Дж.

Ответ.
$$A = \frac{5}{4} mgl \approx 1,2$$
 Дж.

Задача 16

Учитывая.

Пластилиновые шарики имеют одинаковые массы m и взаимно перпендикулярные скорости \vec{v}_1 и \vec{v}_2 , лежащие в одной плоскости. В результате столкновения шарики слипаются и движутся как одно целое. Какое количество теплоты Q выделилось при столкновении, если m=1 г, $v_1 = 2 \text{ m/c}, v_2 = 4 \text{ m/c}?$



Идея. Примените закон сохранения импульса и закон изменения механической энергии.

У казание 1. Запишите закон сохранения импульса и найдите скорость слипшихся шариков.

У казание 2. Примените закон изменения механической энергии шариков.

Решение. Поскольку при столкновении шариков сохраняется импульс, в проекциях

на оси OX и OY координатной системы, изображенной на рисунке, имеем: $mv_2 = 2mv_x$, $mv_1 = v_2$ рисунке, имеем: $mv_2 = 2mv_x$, $mv_1 = v_2$ — проекции скорости \vec{v} тела, образованного слипшимися шариками после удара. Отсюда $v^2 = \frac{1}{4}(v_1^2 + v_2^2)$. По закону

делившееся при ударе,
$$Q = \frac{mv_1^2}{2} + \frac{mv_2^2}{2} - \frac{2mv^2}{2} = \frac{1}{4}m(v_1^2 + v_2^2) = 5 \cdot 10^{-3}$$
 Дж.

Ответ.
$$Q = \frac{1}{4}m(v_1^2 + v_2^2) = 5 \cdot 10^{-3}$$
 Дж.

3adaya 17

Два тела массами $m_1 = 3.8$ г и $m_2 = 6$ г прикреплены к невесомой нити, перекинутой через блок с неподвижной осью. В начальный момент времени груз массой m_2 находится на высоте h=1 м над горизонтальной поверхностью, и оба груза неподвижны. Затем грузы отпускают. Определить количество теплоты О, выделившейся при неупругом ударе тела массой m_2 о горизонтальную поверхность, если это тело сразу после удара останавливается. Силами трения пренебречь. Блок считать невесомым.

И дея. Используйте закон сохранения и закон изменения механической энергии.

У казание 1. Воспользуйтесь законом сохранения механической энергии при движении шариков.

У казание 2. Воспользуйтесь законом изменения механической энергии при неупругом ударе.

Решение. По закону сохранения механической энергии при движении шариков имеем $(m_1+m_2)gh=2m_1gh+\frac{(m_1+m_2)v^2}{2}$. Отсюда скорость шариков в конце движе-

ния (перед ударом шарика
$$m_2$$
 о горизонтальную поверхность) $v = \sqrt{2gh\frac{m_2-m_1}{m_2+m_1}}$. Ис-

комое количество теплоты $Q = \frac{m_2 v^2}{2}$. Объединяя полученные выражения, находим

$$Q = m_2 \cdot \frac{m_2 - m_1}{m_2 + m_1} \cdot gh = 1,32 \cdot 10^{-2}$$
 Дж.

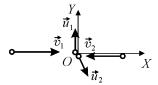
Ответ.
$$Q = m_2 \cdot \frac{m_2 - m_1}{m_2 + m_1} \cdot gh = 1,32 \cdot 10^{-2}$$
 Дж.

Шарик I массой m=200 г движется равномерно со скоростью $v_1=10$ м/с. Навстречу ему движется шарик 2 такой же массой со скоростью $v_2=8$ м/с. После соударения шарик I стал двигаться перпендикулярно направлению его движения до соударения со скоростью $u_1=5$ м/с. Какое количество теплоты Q выделилось при соударении шариков?

- Идея. Используйте закон сохранения импульса и закон изменения механической энергии.
- У казание 1. Запишите закон сохранения импульса в проекции на взаимно перпендикулярные неподвижные координатные оси.
- Указание 2. Воспользуйтесь законом изменения механической энергии.

Решение. Из условия задачи ясно, что шарики испытывают нецентральное соуда-

рение (см. рисунок). Введем координатную систему, ось OX которой направим вдоль линии первоначального движения шариков, а ось OY — перпендикулярно этой линии, и запишем закон сохранения импульса в проекции на эти оси $mv_1 - mv_2 = mu_{2x}$, $mu_1 - mu_{2y} = 0$. Выражая отсюда проекции скорости второго шарика после удара \vec{u}_2 , находим



квадрат ее модуля: $u_2^2 = (v_1 - v_2)^2 + u_1^2$. Выделившееся при ударе количество теплоты

равно убыли кинетической энергии шариков:
$$Q = \frac{mv_1^2}{2} + \frac{mv_2^2}{2} - \left(\frac{mu_1^2}{2} + \frac{mu_2^2}{2}\right)$$
. Под-

ставляя сюда найденное выше выражение для u_2^2 , получаем $Q = m(v_1v_2 - u_1^2) = 11\,$ Дж.

Ответ. $Q = m(v_1v_2 - u_1^2) = 11$ Дж.

Задача 19

На гладком столе покоится брусок массой $M=20\,$ г, прикрепленный пружиной жесткостью $k=50\,$ Н/м к стене. В брусок ударяется шарик массой $m=10\,$ г, движущийся по столу со скоростью $v_0=30\,$ м/с, направленной вдоль оси пружины. Считая соударение шарика и бруска упругим, найти амплитуду A колебаний бруска после удара.

Идея. Примените законы сохранения импульса и механической энергии.

У казание 1. Используя законы сохранения импульса и механической энергии при упругом ударе, найдите скорость бруска после соударения.

У казание 2. Воспользуйтесь законом сохранения энергии при свободных колебаниях без затухания.

Решение. Пусть после соударения шарик и брусок приобретают скорости u_1 и u_2 соответственно. По законам сохранения импульса и механической энергии имеем $mv_0=mu_1+Mu_2, \ \frac{mv_0^2}{2}=\frac{mu_1^2}{2}+\frac{Mu_2^2}{2}.$ Из этой системы находим $u_2=\frac{2m}{m+M}v_0.$ При свободных гармонических колебаниях сохраняется механическая энергия, поэтому $\frac{mu_2^2}{2}=\frac{kA^2}{2}.$ Отсюда находим $A=\frac{2v_0}{(1+M/m)}\sqrt{\frac{M}{k}}=0,4$ м.

Задача 20

Other. $A = \frac{2v_0}{(1+M/m)} \sqrt{\frac{M}{k}} = 0.4 \text{ m}.$

На горизонтальном участке пути длиной L=3 км скорость поезда увеличилась от $v_1=36$ км/ч до $v_2=72$ км/ч. Какую массу топлива m израсходовал двигатель локомотива на этом участке? Суммарная масса поезда и локомотива M=1000 т, сила сопротивления движению поезда пропорциональна его весу с коэффициентом пропорциональности $\mu=0{,}005$, удельная теплота сгорания топлива h=42 МДж/кг, коэффициент полезного действия двигателя $\eta=30\%$. Ускорение свободного падения принять g=10 м/с².

Идея. Используйте закон изменения механической энергии.

Указание 1. Определите, на что затрачена совершенная двигателем работа.

У казание 2. Выразите работу, совершенную двигателем, через количество теплоты, выделившееся при сгорании топлива, и КПД двигателя.

Решение. Работа двигателя локомотива на данном участке пути затрачена на увеличение кинетической энергии поезда и на преодоление силы сопротивления:

$$A = \frac{M}{2}(v_2^2 - v_1^2) + \mu M g L. \quad \text{С} \quad \text{другой стороны,} \quad A = h m \frac{\eta}{100\%} \,. \quad \text{Откуда} \quad \text{находим}$$

$$m = \frac{100\%}{\eta h} M \left(\frac{v_2^2 - v_1^2}{2} + \mu g L \right) \approx 23.8 \quad \text{кг.}$$

Ответ.
$$m = \frac{100\%}{\eta h} M \left(\frac{v_2^2 - v_1^2}{2} + \mu gL \right) \approx 23.8 \text{ кг.}$$

Задача 21

Система из двух шаров массами $m_1 = 0.6$ кг и $m_2 = 0.3$ кг, соединенных невесомой спицей длиной l = 0.5 м, вращается вокруг неподвижной оси, проходящей через центр

тяжести и перпендикулярной спице, с угловой скоростью $\omega = 2$ рад/с. Найти энергию системы E. Размерами шаров по сравнению с длиной спицы пренебречь.

Идея. Используйте выражение для кинетической энергии системы тел.

У казание 1. Запишите формулу для кинетической энергии шаров.

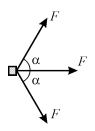
У казание 2. Найдите расстояния от шаров до центра тяжести системы.

Решение. Поскольку центр тяжести системы неподвижен, потенциальная энергия системы не изменяется и ее можно принять равной нулю. Кинетическая энергия шаров рассчитывается по формуле $E=\frac{m_1v_2^2}{2}+\frac{m_1v_2^2}{2}$, где $v_1=\omega l_1$ и $v_2=\omega l_2$ — линейные скорости шаров, l_1 и l_2 — расстояния от каждого из шаров до центра тяжести системы. Из определения центра тяжести следует, что $m_1l_1=m_2l_2$, а по условию $l_1+l_2=l$. Отсюда находим $l_1=\frac{m_2l}{m_1+m_2}$, $l_2=\frac{m_1l}{m_1+m_2}$. Объединяя записанные выражения, получаем $E=\frac{m_1m_2}{2(m_1+m_2)}\omega^2l^2=0$,1 Дж.

Ответ.
$$E = \frac{m_1 m_2}{2(m_1 + m_2)} \omega^2 l^2 = 0,1$$
 Дж.

Задача 22

На горизонтальной шероховатой поверхности находится маленький брусок. Если на брусок подействовать в течение очень короткого промежутка времени горизонтальной силой F, значительно превышающей силу трения скольжения, то после этого брусок пройдет до остановки путь S_0 . Какой путь S пройдет до остановки этот брусок, если в течение того же промежутка времени на него одновременно подействовать тремя горизонтальными силами F, две из которых направлены под углами $\alpha = 60^\circ$ к третьей?



Идея. Используйте законы изменения импульса и механической энергии.

- У казание 1. Запишите законы изменения импульса и механической энергии в случае действия на брусок одной силы F.
- У казание 2. Определите равнодействующую трех сил, действующих на брусок, и снова воспользуйтесь законами изменения импульса и механической энергии.

Решение. Обозначим через τ время действия силы F. По закону изменения импульса имеем $F\tau = mv_0$, где m – масса бруска, v_0 – скорость, которую он приобретает в результате действия силы F (импульсом силы трения за время τ по условию можно

пренебречь). По закону изменения механической энергии имеем $\frac{mv_0^2}{2} = \mu mgS_0$, где μ – коэффициент трения. Величина равнодействующей трех сил, действующих на брусок одновременно и направленных, как показано на рисунке, равна $F_{\Sigma} = F(1+2\cos\alpha)$. Законы изменения импульса и энергии в этом случае дают равенст-

ва $F_{\Sigma}\tau=mv$, $\frac{mv^2}{2}=\mu mgS$. Объединяя записанные выражения, находим, что $S=(1+2\cos\alpha)^2S_0=4S_0$.

OTB eT. $S = (1 + 2\cos\alpha)^2 S_0 = 4S_0$.

Задача 23

Молекулярный пучок составляют одинаковые молекулы, движущиеся с одинаковыми скоростями $v=500\,$ м/с. Масса молекулы $m=4,8\cdot 10^{-26}\,$ кг. На пути пучка установлен экран, плоскость которого перпендикулярна вектору \vec{v} . Найти давление p, оказываемое пучком на экран. Число молекул в единице объема пучка $n=3\cdot 10^{25}\,$ м $^{-3}$. Удар молекулы об экран считать абсолютно упругим.

Идея. Используйте определение импульса силы и закон изменения импульса при упругом ударе.

Указание 1. Найдите величину изменения импульса при упругом соударении с экраном одной молекулы.

У казание 2. Примените закон изменения импульса для N ударяющихся молекул.

Указание 3. Воспользуйтесь определением давления.

Решение. При абсолютно упругом ударе об экран импульс молекулы меняется на величину, по модулю равную $\Delta p_1 = 2mv$. По второму закону Ньютона модуль импульса силы, действующей на экран со стороны молекул, $F\Delta t = N\Delta p_1$, где $N = nSv\Delta t$ – число молекул, ударяющихся об экран за время Δt , S – площадь экрана. Из записанных равенств следует, что $F = 2mnv^2S$. Учитывая, что давление p = F/S, получаем $p = 2nmv^2 = 720$ кПа.

Ответ. p = 720 кПа.

Задача 24

Правая чаша рычажных весов находится под мелким моросящим дождем, а левая укрыта от дождя навесом. Каждая чаша представляет собой тонкостенную цилиндрическую емкость с площадью дна $S=0.05\,$ м 2 и высотой бортика $h=1\,$ мм. Интенсивность равномерно падающего дождя такова, что дождевая вода целиком заполняет предварительно опорожненную чашу весов за время $\tau=30\,$ с. Какой массы m гирю нужно

положить на левую чашу весов, чтобы уравновесить весы в случае, когда правая чаша заполнена дождевой водой до краев? Капли дождя падают вертикально со скоростью $v=3\,$ м/с. Плотность воды $\rho=10^3\,$ кг/м 3 . Ускорение свободного падения принять равным $g=10\,$ м/с 2 . Соударение капель с водой в чаше считать неупругим.

- Идея. Используйте закон изменения импульса капель при неупругом соударении с водой.
- У казание 1. Запишите закон изменения импульса при неупругом соударении капель с водой, попадающих в чашу за время Δt .
- Указание 2. Определите силу, действующую на полностью заполненную чашу весов, учитывающую силу давления падающих капель.

Решение. На правую чашу весов, заполненную водой до краев, действует сила F = Mg + N, где $M = \rho Sh$ — масса воды в этой чаше, N — сила давления падающих капель дождя. Поскольку соударение капель с водой, находящейся в чаше, является неупругим, по второму закону Ньютона имеем $\Delta m \cdot v = (N - \Delta m \cdot g)\Delta t$, где $\Delta m = \frac{M}{\tau}\Delta t$ — масса дождевых капель, попадающих в чашу за малое время Δt . Отсюда $N\Delta t = \frac{Mv}{\tau}\Delta t + \frac{Mg}{\tau}\Delta t^2$. Учитывая малость Δt , находим, что приближенно $N \approx \frac{Mv}{\tau}$.

Весы будут уравновешены, если масса гири на левой чаше $m = \frac{F}{g} = \rho Sh + \frac{N}{g}$. Объеди-

няя записанные выражения, получаем $m = \rho Sh \left(1 + \frac{v}{g\tau} \right) = 50,5$ г.

Otbet.
$$m = \rho Sh \left(1 + \frac{v}{g\tau}\right) = 50.5 \text{ r.}$$

Задача 25

На гладком горизонтальном столе покоится трубка массой M и длиной L, закрытая с одного торца. В открытый конец трубки влетает маленький шарик массой m со скоростью, направленной вдоль оси трубки. После упругого удара о закрытый торец трубки шарик вылетает наружу. Какой путь S относительно стола пройдет шарик за время, кото-

рик вылетает наружу. Какой путь S относительно стола пройдет шарик за время, которое он будет находиться внутри трубки? Размером шарика и трением между всеми поверхностями пренебречь.

Идея. Используйте законы сохранения импульса и механической энергии.

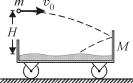
- Указание 1. Запишите законы сохранения импульса и кинетической энергии в системе тел «шарик + трубка».
- У казание 2. Определите относительную скорость шарика и трубки после удара.

Решение. Пусть начальная скорость шарика v_0 . Из законов сохранения импульса и кинетической энергии в системе «шарик + трубка» следует, что $mv_0 = MV + mv$, $mv_0^2 = MV^2 + mv^2$, где V и v – скорости трубки и шарика после соударения. Из этой системы находим $V = \frac{2m}{M+m}v_0$, $v = \frac{m-M}{M+m}v_0$. Поскольку относительная скорость этих тел после удара $V_{\text{отн}} = V - v = v_0$, время, которое шарик движется после соударения внутри трубки, $\tau = \frac{L}{V_{-\cdots}} = \frac{L}{v_0}$. За это время он проходит путь $S' = |v| \tau = \frac{|m-M|}{M_0 + \cdots} L$. Полный путь, пройденный шариком, S = L + S'. Отсюда находим $S = L \left(1 + \frac{|m-M|}{M+m} \right)$.

$$\label{eq:state_state} \textsc{Otbet.} \quad S = L \bigg(1 + \frac{ \big| \, m - M \, \big|}{M + m} \bigg) \,.$$

Задача 26

На горизонтальных рельсах стоит тележка массой M. В нее бросают шар массой m,



который ударяется о правую стенку тележки и падает на ее дно, застревая в насыпанном на дно песке. В момент, когда шар пролетал над левой стенкой тележки, его скорость была равна $v_0 = 4$ м/с и направлена горизонтально, а высота над поверхностью песка составляла H = 1.8 м. Какой путь Sпройдет тележка к моменту падения шара на песок, если дли-

на тележки L=2 м? Удар шара о стенку считать абсолютно упругим, стенку и шар гладкими, трением при движении тележки и размером шара пренебречь. При расчете положить m = M/9. Ускорение свободного падения принять равным $g = 10 \text{ M/c}^2$.

Используйте законы сохранения импульса и энергии при ударе шара о стенку тележки.

Запишите закон сохранения импульса в проекции на горизонтальную Указание 1. ось и закон сохранения механической энергии. Найдите скорость тележки после удара.

У казание 2. Из кинематических уравнений определите время движения тележки до момента падения шара на песок.

Решение. При упругом ударе шара о правую стенку тележки сохраняются горизонтальная проекция импульса и механическая энергия. Имеем $mv_0 = Mu - mv$, $\frac{mv_0^2}{2} = \frac{Mu^2}{2} + \frac{mv^2}{2}$, где u – скорость тележки, v – горизонтальная проекция скорости шара после удара. Из этой системы находим $u = \frac{2m}{M+m}v_0 = 0,2v_0$. Поскольку вертикальная проекция скорости шара при ударе о гладкую стенку не меняется, время т

движения мяча с момента, когда он пролетает над левой стенкой, до попадания в песок равно времени свободного падения с высоты H: $\tau = \sqrt{2H/g}$. Время движения мяча с момента, когда он пролетает над левой стенкой, до удара о правую стенку $\tau_1 = L/v_0$. Приобретя после удара скорость u, тележка пройдет до момента падения шара на песок путь $S = u(\tau - \tau_1)$. Отсюда находим $S = \frac{2mv_0}{M+m} \left(\sqrt{\frac{2H}{g}} - \frac{L}{v_0} \right) = 8$ см.

Otbet.
$$S = \frac{2mv_0}{M+m} \left(\sqrt{\frac{2H}{g}} - \frac{L}{v_0} \right) = 8 \text{ cm.}$$

Задача 27

Две пружины, соединенные, как показано на рисунке, имеют жесткости k_1 =15 Н/м и k_2 =10 Н/м. Пружины растянули за свободные концы в разные стороны, совершив работу A =1 Дж. Каковы k_1 k_2 потенциальные энергии E_1 и E_2 деформации каждой из пружин по отдельности?

Идея. Воспользуйтесь законом Гука и выражением для потенциальной энергии упругой деформации пружины.

Указание 1. Запишите закон Гука для системы пружин.

У казание 2. Определите эквивалентную жесткость двух последовательно соединенных пружин и найдите потенциальные энергии деформации каждой пружины.

Решение. При растяжении пружин, соединенных последовательно, возникающие в них силы упругости одинаковы. Следовательно, $k_1\Delta l_1=k_2\Delta l_2$, где Δl_1 и Δl_2 – абсолютные удлинения пружин. Их сумма равна общему удлинению Δl системы: $\Delta l_1+\Delta l_2=\Delta l.$ Отсюда $\Delta l_1=\Delta l\frac{k_2}{k_1+k_2}$, $\Delta l_2=\Delta l\frac{k_1}{k_1+k_2}$. Жесткость двух пружин, соединенных последовательно, $k=\frac{k_1k_2}{k_1+k_2}$. Поэтому работа по их растяжению

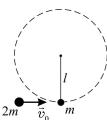
$$A = \frac{k_1 k_2}{k_1 + k_2} \cdot \frac{\Delta l^2}{2}$$
, откуда $\frac{\Delta l^2}{2} = \frac{A(k_1 + k_2)}{k_1 k_2}$. Потенциальные энергии деформации пру-

жин $E_1 = \frac{k_1 \Delta l_1^2}{2}$, $E_2 = \frac{k_2 \Delta l_2^2}{2}$. Объединяя записанные выражения, получаем

$$E_1 = A \frac{k_2}{k_1 + k_2} = 0,4$$
 Дж, $E_2 = A \frac{k_1}{k_1 + k_2} = 0,6$ Дж.

Ответ.
$$E_1 = A \frac{k_2}{k_1 + k_2} = 0,4$$
 Дж, $E_2 = A \frac{k_1}{k_1 + k_2} = 0,6$ Дж.

Шарик массой m подвешен на невесомой нерастяжимой нити длиной $l=1\,$ м. В него



ударяется шарик массой 2m, летящий в плоскости рисунка со скоростью \vec{v}_0 так, что вектор скорости направлен горизонтально вдоль линии, соединяющей центры шаров. Каким должен быть модуль скорости v_0 , чтобы после удара шарик массой m совершил полный оборот по окружности в вертикальной плоскости? Удар считать абсолютно упругим, силы трения не учитывать. Ускорение свободного падения $g=9,8\,$ м/с 2 .

Идея. Используйте законы сохранения импульса и механической энергии.

- Указание 1. Воспользуйтесь законом сохранения проекции импульса на горизонтальное направление и законом сохранения механической энергии при соударении шариков.
- Указание 2. Запишите закон сохранения механической энергии для шарика, закрепленного на нити, после удара.
- Указание 3. Определите условие, при котором скорость, сообщаемая шарику для его полного оборота, будет минимальной.

Решение. При соударении шариков сохраняется проекция импульса на горизонтальное направление и кинетическая энергия системы. Обозначив через v_1 и v_2 модули скоростей шариков m и 2m после удара, имеем $2mv_0=mv_1+2mv_2$, $2m\frac{v_0^2}{2}=m\frac{v_1^2}{2}+2m\frac{v_2^2}{2}$. Так как сила натяжения нити T работу не совершает, при движении шарика m после удара сохраняется его полная механическая энергия. Для нижней и верхней точек окружности, по которой движется этот шарик, получаем $m\frac{v_1^2}{2}=2mgl+m\frac{u^2}{2}$, где u — модуль скорости шарика в верхней точке. Уравнение

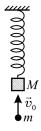
движения шарика в верхней точке окружности имеет вид $m\frac{u^2}{l} = mg + T$. Отсюда следует, что u минимально, если натяжение нити в верхней точке обращается в нуль, т.е.

$$m\frac{u_{\min}^2}{l} = mg$$
. Объединяя записанные выражения, получаем $v_0 = \frac{3}{4}\sqrt{5gl} = 5{,}25\,$ м/с.

OTBET. $v_0 = \frac{3}{4}\sqrt{5gl} = 5.25$ m/c.

Задача 🤻

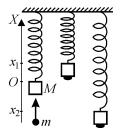
Брусок массой M=100 г подвешен на невесомой пружине жесткостью k=1 H/м. Снизу в него попадает пластилиновый шарик массой m=1 г, летящий вертикально вверх со скоростью $\upsilon_0=2,5\,$ м/с, и прилипает к бруску. Найти амплитуду A возникающих при этом гармонических колебаний. Ускорение свободного падения $g=10\,$ м/с 2 .



- Идея. Используйте законы сохранения импульса и механической энергии, а также определение амплитуды колебаний.
- Указание 1. Примените закон сохранения импульса и найдите скорость бруска после прилипания к нему пластилинового шарика.
- Указание 2. Используйте закон сохранения механической энергии и найдите координаты верхнего и нижнего положения бруска. Воспользуйтесь определением амплитуды колебаний.

Решение. Выберем начало отсчета в положении равновесия бруска до прилипания шарика, ось OX направим вверх. В этом состоянии пружина растянута на величину $x_0 = Mg/k$. По закону сохранения импульса в момент прилипания шарика имеем

 $mv_0 = (M+m)u$, откуда $u = \frac{mv_0}{M+m}$. В точках максимального x_1 смещения от нового положения равновесия скорость бруска и шарика равна нулю. Из закона сохранения механической энергии следует равенство $\frac{(M+m)u^2}{2} + \frac{kx_0^2}{2} = (M+m)gx + \frac{k(x-x_0)^2}{2}$. Подставляя в О это равенство найденные ранее x_0 и u, получаем квадратное урав-



нение относительно x, а именно $x^2 + \frac{2mg}{k}x - \frac{m^2v_0^2}{k(M+m)} = 0$. Раз-

решая это уравнение, получаем два корня, которые соответствуют координатам верх-

ней и нижней точек движения бруска с шариком: $x_{1,2} = -\frac{mg}{k} \pm \sqrt{\left(\frac{mg}{k}\right)^2 + \frac{m^2 v_0^2}{k(M+m)}}$.

Амплитуда колебаний равна $A = \frac{1}{2}(x_1 - x_2) = \frac{mg}{k} \sqrt{1 + \frac{k}{M+m} \left(\frac{v_0}{g}\right)^2} \approx 1,3$ см.

Otbet.
$$A = \frac{mg}{k} \sqrt{1 + \frac{k}{M + m} \left(\frac{v_0}{g}\right)^2} \approx 1,3$$
 cm.

Задача 🏶

На гладком горизонтальном столе лежит деревянный брусок, прикрепленный пружиной к вертикальной стенке. В брусок попадает пуля массой m=10 г, летящая

горизонтально вдоль оси пружины, и застревает в нем. Определить жесткость пружины m k, если известно, что время, в течение которого сжималась пружина после попадания пули в брусок, T=0,1 с, отношение количества теплоты, выделившейся при взаимодействии пули с бруском, к начальной кинетической энергии пули $\alpha=0,9$. Трением бруска о стол, а также массой пружины пренебречь.

Идея. Воспользуйтесь законами сохранения импульса и изменения механической энергии.

У казание. Используйте формулу для периода колебаний пружинного маятника.

Решение. Обозначим через v скорость пули перед ударом, а через M — массу бруска. Из закона сохранения импульса и закона изменения механической энергии следуют равенства mv=(M+m)u, $\frac{mv^2}{2}=\frac{(M+m)u^2}{2}+Q$, где u — скорость пули и бруска после соударения, Q — количество теплоты, выделившейся при взаимодействии пули с бруском, причем по условию $Q=\alpha\frac{mv^2}{2}$. Время T, в течение которого сжималась пружина, равно четверти периода колебаний тела массой (M+m) на пружине жесткостью k, т.е. $T=\frac{2\pi}{4}\sqrt{\frac{M+m}{k}}$. Объединяя записанные выражения, получаем $k=\frac{\pi^2m}{4T^2(1-\alpha)}=25\,$ Н/м.

Otbet.
$$k = \frac{\pi^2 m}{4T^2(1-\alpha)} = 25$$
 H/m.

Задача 🍇

Два одинаковых шарика массой m каждый, связанные пружиной жесткостью k и

длиной l, лежат неподвижно на гладком горизонтальном столе. Третий такой же шарик движется со скоростью v_0 по линии, соединяющей центры шариков, связанных пру-

жиной, и совершает упругое соударение с одним из них. Определить максимальное и минимальное расстояния между шариками, связанными пружиной, при их дальнейшем движении. Принять, что $v_0 < l\sqrt{2k/m}$. Массой пружины, временем соударения и трением пренебречь.

Идея. Используйте законы сохранения импульса и механической энергии.

- Указание 1. Найдите скорости шариков после удара.
- У казание 2. Воспользуйтесь связью между скоростями шариков в моменты времени, когда расстояние между ними максимально или минимально.

Решение. Из законов сохранения импульса и энергии, записанных для упругого соударения одинаковых по массе шариков, следует, что они при ударе обмениваются скоростями. Поэтому после соударения двигавшийся шарик остановится, а покоившийся приобретет скорость v_0 . При последующем движении шариков, связанных пружиной, также будут сохраняться импульс и энергия. Учитывая, что в моменты времени, когда расстояния между шариками максимальны или минимальны, их относительная скорость обращается в нуль, для этих моментов времени имеем $mv_0 = 2mv$,

$$\frac{mv_0^2}{2} = \frac{2mv^2}{2} + \frac{kx^2}{2}$$
, где v – скорость шариков, x – удлинение пружины. Исключая из

этих соотношений v, находим $x=\pm v_0\sqrt{\frac{m}{2k}}$. Следовательно, $l_{\max}=l+v_0\sqrt{\frac{m}{2k}}$,

$$l_{\min} = l - v_0 \sqrt{\frac{m}{2k}} \ .$$

Otbet.
$$l_{\max} = l + \upsilon_0 \sqrt{\frac{m}{2k}}$$
, $l_{\min} = l - \upsilon_0 \sqrt{\frac{m}{2k}}$.